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Neural Networks == Deep Learning
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Biological “Inspiration”
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Some History
● Neural network algorithms date to the 80’s

○ Originally inspired by early neuroscience

● Historically slow, complex, and unwieldy
● Now: term is abstract enough to encompass almost any model – but useful!
● Dramatic shift in last 3-4 years away from MaxEnt/LR (linear, convex) to 

“neural net” (non-linear architecture, non-convex)
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Linearity, Convexity
● MaxEnt (linear, convex) to “neural net” (non-linear architecture, non-convex)
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(Starting from) A Neuron
A neuron is the fundamental building block of neural networks.
e.g., a neuron with sigmoid function
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Presentations
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Projects
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Two layer neural networks
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Activation Functions
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Activation Functions
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Activation Functions
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Leaky ReLU



How to train Neural Networks?
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● Start from two-layer perceptron.



How to train two-layer Perceptron?
Forward propagation: 

Backward propagation: 

15



How to train two-layer Perceptron?
Forward propagation: In this phase, the inputs for a training instance are fed into the neural 
network. This results in a forward cascade of computations across the layers, using the current 
set of weights. 

Backward propagation: 
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How to train two-layer Perceptron?
Forward propagation: In this phase, the inputs for a training instance are fed into the neural 
network. This results in a forward cascade of computations across the layers, using the current 
set of weights. The output is the prediction of current weights.

Backward propagation: The main goal of the backward phase is to learn the gradient of the 
loss function with respect to the different weights by ❓. 
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Animation



Forward propagation

We use the sigmoid activation 
function which introduces 
better non-linearity:
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Forward propagation
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Forward propagation
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Forward propagation
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Forward propagation - Compact Form
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Forward propagation - Compact Form
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Beyond two layers: multilayer neural networks
Why not add more and more layers to learn more complex decision boundaries?
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Discriminative Model (e.g. Neural Network)
The discriminative model is parameterized by
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Discriminative Model Objective Function
The discriminative model is parameterized by

We often use negative log likelihood over training data as our objective function
or loss function. It is a function of 
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Discriminative Model Objective Function
The discriminative model is parameterized by

We often use negative log likelihood over training data as our objective function
or loss function. It is a function of 

We then optimize the parameters to minimize the loss. Better model has lower loss
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Optimize Objective Function by Gradient Descent
Calculate the gradient of the loss function with respect to the parameter

Update     by moving a small step in the gradient direction to decrease the loss

is the learning rate
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Gradient Descent
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Gradient Descent
The key operation in gradient descent is to calculate the gradient.
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Gradient calculation recap
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Gradient of univariate scalar-valued functions
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Gradient of multivariate scalar-valued functions
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Gradient of multivariate scalar-valued functions
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What about vector-valued functions?



Gradient of multivariate vector-valued functions: Jacobian 
Matrix
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Example Jacobian: Elementwise activation Function
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Other Jacobians

Left as exercise. Will be used later.
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Chain Rule
Chain Rule tells us how to calculate gradients of composite functions.
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Example
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Calculate           for the following feed-forward neural network. 



Example
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Calculate 



Example
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Calculate 



Backprop
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Backpropagation
We use gradient descent to optimize the parameters in neural networks.

The key question: How can we efficiently calculate the gradients in neural 
networks (or any computational graph)?

The key intuition: View neural networks (or any computational graph) as 
compositions of functions and use chain rules to calculate the gradient.

This is Backpropagation = Gradient Descent + Chain Rule
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Computation Graph (for implementation)
In software library (e.g. pytorch, TF), neural networks are implemented as 
Computation Graph (CG).
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Forward Propagation in CG
In software library (e.g. pytorch, TF), neural networks are implemented as 
Computation Graph (CG).
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Backpropagation in CG
In software library, neural networks are implemented as Computation Graph (CG).
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Backpropagation avoids duplicated computation
Backpropagation follows the computation graph in reverse order, so you avoid 
dupdated computation.
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Backpropagation: Single Node
Node receives an upstream gradient.
Each node has a local gradient.
Goal is to pass on the correct downstream gradient.
By Chain Rule: downstream gradient = upstream gradient x local gradient.
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Backpropagation: Multiple Inputs
each input 

57



Backpropagation: Multiple Outputs
If a node has multiple outgoing edges
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Example (Skip)
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Optimizers
Once we calculate the gradient with respect to the objective function, we optimize 
objective function by gradient descent. 

The very basic one is standard gradient descent. But there are many other 
choices of optimizers:

● Batch Gradient Descent
● Stochastic Gradient Descent (SGD)
● Mini-batch Gradient Descent
● SGD with Momentum
● Nesterov accelerated gradient
● Adagrad
● Adadelta
● RMSProp
● Adam; AdamW (most commonly used)
● Adafactor 72
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Batch Gradient Descent
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Old ParametersNew Parameters Learning Rate Gradient



Mini-batch Gradient Descent
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Gradient for a batch of training examples; batch size n



Stochastic Gradient Descent (SGD)
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Gradient for each training example



SGD with Momentum
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Momentum parameter, usually 0.9 or a similar value



Training Tricks
Shuffling the Training Data Every Epoch: avoid providing the training examples in a 
meaningful order to our model as this may bias the optimization algorithm. 

Regularization: L2 regularization adds L2 norm of parameters to the loss function.

Dropout: randomly zero-out nodes in the hidden layer with probability p at training time only
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Training Tricks
Shuffling the Training Data Every Epoch: avoid providing the training examples in a 
meaningful order to our model as this may bias the optimization algorithm. 

Regularization: L2 regularization adds L2 norm of parameters to the loss function.

Dropout: randomly zero-out nodes in the hidden layer with probability p at training time only

Learning Rate Decay: gradually reduce learning rate as training continues
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Training Tricks
Shuffling the Training Data Every Epoch: avoid providing the training examples in a 
meaningful order to our model as this may bias the optimization algorithm. 

Regularization: L2 regularization adds L2 norm of parameters to the loss function.

Dropout: randomly zero-out nodes in the hidden layer with probability p at training time only

Learning Rate Decay: gradually reduce learning rate as training continues

Early stopping
● You should thus always monitor error on a validation set during training and stop (with 

some patience) if your validation error does not improve enough.
● Use Patience

86https://paperswithcode.com/method/early-stopping



Parameter Initialization
Very Important for neural networks to achieve good performance.

Uniform Initialization: Initialize weights in some range, such as [-0.1, 0.1] for 
example

Xavier Initialization: n(l) is the number of input units to W (fan-in) and n(l+1) is 
the number of output units from W (fan-out).
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