3.1 Neural Networks and Backpropagation

CS 6301
Spring 2023

Many Slides from Stanford CS224n and Rui Zhang

Outline - Key Concepts

NLP

ML

N/A

Neural Networks
Forward Propagation
Gradient Descent
Backpropagation
Computational Graph
Optimizers

Neural Networks == Deep Learning

branches of axon
dendrites

nucleus

cell body impulses carried away
from cell body

Biological “Inspiration”

Zo wo

@ synapse
axon from a neuron
woTo

cell body

impulses carried
toward cell body

branches

dendrites

axon

nucleus terminals

impulses carried
away from cell body

Some History

e Neural network algorithms date to the 80’s

o Originally inspired by early neuroscience
e Historically slow, complex, and unwieldy
Now: term is abstract enough to encompass almost any model — but useful!
Dramatic shift in last 3-4 years away from MaxEnt/LR (linear, convex) to
“neural net” (non-linear architecture, non-convex)

Linearity, Convexity

e MaxEnt (linear, convex) to “neural net” (non-linear architecture, non-convex)

The MaxEnt objective behaves nicely:
— Differentiable (so many ways to optimize)
— Convex (so no local optima)

fa+ (1 =2)b) > Af(a) + (1 = A)f(b)

JI‘(/\a—f-(l—/\)bP
.................... A (a) + (1=) F(br T

Convex Non-Convex
LB

Convexity guarantees a single, global maximum value because
any higher points are greedily reachable

&5¢¢ daqvn

RS
(Starting from) A Neuron @

A neuron is the fundamental building block of neural networks.
e.g., a neuron with sigmoid function

I
w1
"2 N V
ws,\~ _/_
T3 > b o —> J
Sigmoid
Wn,

o =
) 1+ exp(—2)

Presentations

Projects

Two layer neural networks

Input layer Hidden layer Output layer

b
U1
V2
3 >y [—
(F)

rcRY W c Rpxd v € RP

10

Activation Functions

Y

11

Activation Functions

Identity Sign

o(z) = sign(z) (Sign)
o(z) = max{0,z} (Rectified Linear Unit [ReLU])

(Sigmoid)

12

Activation Functions

'
o8
o4
04
1 oz {
Iy
04

Identity Sign

L
o
o
o4
02|
o
02|

s
Tanh

o(z) = sign(z) (Sign)

o(z) = max{0, z}

(Sigmoid)

ReLU

Sigmoid

15] 05 0 05 1 15 2
Hard Tanh

(Rectified Linear Unit [ReLU])

......
44444444444

leaky(z) = max(z, k- z)

where 0 < k < 1

_ exp(z) —exp(—2)
@nh() = oxp(z) + exp(—2)

-1 :z< -1
hardtanh(z) = z :—-1<z<1
1 :z>1 13

How to train Neural Networks?

e Start from two-layer perceptron.

14

How to train two-layer Perceptron?

Forward propagation:

Backward propagation:

15

How to train two-layer Perceptron?

Forward propagation: In this phase, the inputs for a training instance are fed into the neural
network. This results in a forward cascade of computations across the layers, using the current

set of weights.

> udogu

I hq b
N N
2 T2 hao \
PN)<>< V2
- 4 V-
aﬂ% p— s IEE .
Zq hp

“cat”

Backward propagation:

16

How to train two-layer Perceptron?

Forward propagation: In this phase, the inputs for a training instance are fed into the neural
network. This results in a forward cascade of computations across the layers, using the current

set of weights. The output is the prediction of current weights.

U1

> udogu

I hq b
Nl N
" T2 ha \
£ g)@< V2
GV ",
d‘ﬁ Ny
Zq hp

V2

U3

“cat”

<
<

Backward propagation: The main goal of the backward phase is to learn the gradient of the

loss function with respect to the different weights by ? .
17

Animation

| | ||
—(}E.,_ /)
VO(...) =
v ya
All weights '
and biases
| | ||

C(wo, wr, . . . ,’w13,001) = 34

Forward propagation

O —f()

sigmoid function

T T
—————————————

We use the sigmoid activation
function which introduces
better non-linearity:

19

Forward propagation

20

Forward propagation

2
o(wiz) +wizy)

(
o(wazy + wizs)
(

o(w3z) + wizy)

= O'(’Ulhl + ’l)2h2 + ’l)3h3)

21

Forward propagation

2
o(wiz) +wizy)

(
o(wyz1 + w3Ts)
o(w3z) + wizy)

= O'(’Ulhl + ’l)2h2 + ’l)3h3)

O'(Ulhl + vohg + ’U3h3)

22

Forward propagation - Compact Form

2
o(wiz) +wizy)

(
o(wazy + wizs)
(

o(w3z) + wizy)

= O'(’Ulhl + ’l)2h2 + ’U3h3)

J(Ulhl + ’Ughg + ’U3h3)

(W)

Forward propagation - Compact Form

2
o(wiz) +wizy)

(
o(wazy + wizs)
(

o(w3z) + wizy)

= O'(’Ulhl + ’l)2h2 + ’U3h3)

J(Ulhl + ’Ughg + ’U3h3)

e(we)

Beyond two layers: multilayer neural networks

Why not add more and more layers to learn more complex decision boundaries?

Input layer Hidden layer 1 Hidden layer 2 Hidden layer L Qutput layer

S

25

Discriminative Model (e.g. Neural Network)

The discriminative model is parameterized by 0

P(y| X;0)

26

Discriminative Model Objective Function

The discriminative model is parameterized by 0

P(y| X;0)

We often use negative log likelihood over training data as our objective function
or loss function. It is a function of 6

LO)=—) logP(yX;0)
(Xay)EDtrain

27

Discriminative Model Objective Function

The discriminative model is parameterized by 0

P(y| X;0)

We often use negative log likelihood over training data as our objective function
or loss function. It is a function of 6

LO)=—) logP(yX;0)
(Xay)EDtrain

We then optimize the parameters to minimize the loss. Better model has lower loss

f = arg min £(6)
0

28

Optimize Objective Function by Gradient Descent

Calculate the gradient of the loss function with respect to the parameter
HL(0)
00

Update & by moving a small step in the gradient direction to decrease the loss

0L (6
Hnew . Hold — 1 aé)

T] is the learning rate

29

Gradient Descent

Wwo = 0
for t=1,2,...,T

w1 = w — NV f(wy
end for

return wr

The counters of function

30

Gradient Descent

The key operation in gradient descent is to calculate the gradient.

AL (6)
00

31

Gradient calculation recap

32

Gradient of univariate scalar-valued functions

We are all familiar with basic calculus, and functions of the form f : R — R and
their derivatives:

f(@) — 1img F@TH) —F@)

h—0 h

The derivative of a function of a real variable measures the sensitivity to change of
the function value (output value) with respect to a change in its argument (input
value).
> f(x) =2z, then f'(z) = rz" 1,
d =,
i~ o
» Sums rule: (af + Bg) = af’ + B¢’ for all functions f and g and all real
numbers o and 3

» Product rule: (fg)' = f'g+ fg' for all functions f and g.
» Chain rule: If f(x) = h(g(x)), then

f'(z) = h'(g(x)) - ' ().

33

Gradient of multivariate scalar-valued functions

Definition

Let f: C C R? — R be a differentiable function. Then, the gradient of f at € C
is the vector in R? denoted by V f(x) and defined by

- 0 -
a,—q‘fl(w)

f(x) = f(z1,22,....,Zn) Vf(x)=

34

Gradient of multivariate scalar-valued functions

Definition

Let f: C C R? — R be a differentiable function. Then, the gradient of f at € C
is the vector in R? denoted by V f(x) and defined by

- 0 -
a,—q‘fl(w)

f(x) = f(z1,22,....,Zn) Vf(x)=

.
and(fE)

What about vector-valued functions?

35

Gradient of multivariate vector-valued functions: Jacobian
Matrix

Given a function with m outputs and n inputs

f(x)=fi(x1, T2, .., Tn),s ey fin(T1, X2, ..., Tp)]

It’s Jacobian is an m x n matrix of partial derivatives

- o1 gfl‘
ox 1
g — °1 . (5_f) _ Ofi
ox % ' % ox), O
L Oxq ox,, -

Example Jacobian: Elementwise activation Function

Oh
h = f(z),what is 8_z? h,z e R"
hi = f(zi)
(g—};)” = ggj = (‘jzj f(z) definition of Jacobian

. . regular 1-variable derivative
0 if otherwise

:{f’(zi) if i = j

oh (”Z“. 0

) = diag(f'(2))
O f'(zn)

37

Other Jacobians

i(W:I:er) =W

ox

%(Wm + b) = I (Identity matrix)
J 1 T

5e1 (u”h)=nh

Left as exercise. Will be used later.

38

Chain Rule

Chain Rule tells us how to calculate gradients of composite functions.

For composition of one-variable functions: multiply derivatives
Z = 3y
y =’
dz dzdy

For multiple variables at once: multiply Jacobians
h = f(z)
z=Wx+b
oh _ 9hdz _
ox 0z0x

39

Example

Calculate 0s

for the following feed-forward neural network.

|

h=f(Wz+b) (0000 0000 |

s=ulh

x (input) =[[nn 0000 0000 0000 0000 |

Xmuseums Xin

Xparis Xare Xamazing]

40

Example

Calculate %
ob

s=u'h
h = f(z)
z=Wax+0b

x (input)

0s _ 05 Oh
ob Oh Oz

0z
ob

41

0
Example og WEHO =W

95 %(Wa: + b) = I (Identity matrix)

Calculate A i(Th) = T
s=u'h 0s _0s Oh 02
z=Wx+b l l l
r (input) = ul'diag(f'(2))1

=u' o f'(z)

42

Backprop

U1

V2

U3

50

Backpropagation
We use gradient descent to optimize the parameters in neural networks.

The key question: How can we efficiently calculate the gradients in neural
networks (or any computational graph)?

The key intuition: View neural networks (or any computational graph) as
compositions of functions and use chain rules to calculate the gradient.

This is Backpropagation = Gradient Descent + Chain Rule

51

Computation Graph (for implementation)

In software library (e.g. pytorch, TF), neural networks are implemented as
Computation Graph (CG).

s=ulh
h = f(2) e —() —(—(D—(
z=Wax+b

x (input)

52

Forward Propagation in CG

In software library (e.g. pytorch, TF), neural networks are implemented as
Computation Graph (CG).

s=ulh

h:f(z) a:—>WthS
z=Wax+0b

x (input) w b

u

53

Backpropagation in CG

In software library, neural networks are implemented as Computation Graph (CG).

s=ulh
z h S
0s 0s 0s
z=Wax+0b By h 9%

x (input) w b% u

54

Backpropagation avoids duplicated computation

Backpropagation follows the computation graph in reverse order, so you avoid
dupdated computation.

s=u'h
h = f(z) ﬁ:(i)é @_
z=Wx+b

W&S 83
x (input) b

55

Backpropagation: Single Node

Node receives an upstream gradient.

Each node has a local gradient.

Goal is to pass on the correct downstream gradient.

By Chain Rule: downstream gradient = upstream gradient x local gradient.

Chain [ds s h = f(z)
rule! (9_,2 — oh
Downstream Local Upstream

gradient gradient gradient

Backpropagation: Multiple Inputs

each input
144
W z
OW 0z OW .
T < 9s
/ 0z
05 _ 050z
ox 0z Ox
Downstream Local Upstream

gradients gradients gradient

z=Wax

57

Backpropagation: Multiple Outputs

If a node has multiple outgoing edges

a=+Y
b=max(y,z) Jf 0Jf0da

£ ab oy 0ady |

of o

58

Example (Skip) f(z,y,2) = (z +y) max(y, z)
g=l,y=2.2=1

Forward prop steps
a=T+Y
b = max(y, 2)

f=ab

Optimizers
Once we calculate the gradient with respect to the objective function, we optimize
objective function by gradient descent.

The very basic one is standard gradient descent. But there are many other

choices of optimizers:
e Batch Gradient Descent
Stochastic Gradient Descent (SGD)
Mini-batch Gradient Descent
SGD with Momentum
Nesterov accelerated gradient
Adagrad
Adadelta
RMSProp
Adam; AdamW (most commonly used)
Adafactor

Optimizers
Once we calculate the gradient with respect to the objective function, we optimize
objective function by gradient descent.

The very basic one is standard gradient descent. But there are many other

choices of optimizers:
e Batch Gradient Descent
Stochastic Gradient Descent (SGD)
Mini-batch Gradient Descent
SGD with Momentum
Nesterov accelerated gradient
Adagrad
Adadelta
RMSProp
Adam; AdamW (most commonly used)
Adafactor

Batch Gradient Descent

0=0—n-VeJ(0
_— / 77\9&

New Parameters Old Parameters Learning Rate Gradient

for i in range(nb_epochs):
params_grad = evaluate_gradient(loss_function, data,
params = params - learning_rate * params_grad

params)

74

Mini-batch Gradient Descent

0 =0 — n- VQJ(Q, w(i:i—l—n); y(zz—l—n))
T

Gradient for a batch of training examples; batch size n

75

Stochastic Gradient Descent (SGD)

0=0—n-VeJ(0;z";y")
I

Gradient for each training example

76

SGD with Momentum

Momentum parameter, usually 0.9 or a similar value

e
v = Yve—1 + NV J(0)

(9:(9—’075

(a) SGD without momentum (b) SGD with momentum

Figure 2: Source: Genevieve B. Orr

77

Training Tricks

Shuffling the Training Data Every Epoch: avoid providing the training examples in a
meaningful order to our model as this may bias the optimization algorithm.

Regularization: L2 regularization adds L2 norm of parameters to the loss function.

Dropout: randomly zero-out nodes in the hidden layer with probability p at training time only

active unit

) inactive unit

o % W { !

pll=00 ptl=00 pP=05 pBl=00 p=025

84

Training Tricks

Shuffling the Training Data Every Epoch: avoid providing the training examples in a
meaningful order to our model as this may bias the optimization algorithm.

Regularization: L2 regularization adds L2 norm of parameters to the loss function.
Dropout: randomly zero-out nodes in the hidden layer with probability p at training time only

Learning Rate Decay: gradually reduce learning rate as training continues

85

Training Tricks

Shuffling the Training Data Every Epoch: avoid proidina tha trainina avamn lnein g

meaningful order to our model as this may bias the o Er
Regularization: L2 regularization adds L2 norm of p
Dropout: randomly zero-out nodes in the hidden lay:t
Learning Rate Decay: gradually reduce learning rat:

Early stopping

Validation set

Training set

1
|
1
)
)
)
]
Y

Early Number of
stopping iterations

ne only

e You should thus always monitor error on a validation set during training and stop (with
some patience) if your validation error does not improve enough.

e Use Patience

https://paperswithcode.com/method/early-stopping

86

Parameter Initialization

Very Important for neural networks to achieve good performance.

Uniform Initialization: Initialize weights in some range, such as [-0.1, 0.1] for
example

Xavier Initialization: n(l) is the number of input units to W (fan-in) and n(I+1) is
the number of output units from W (fan-out).

6 6
W~ ”[_ \/ 2D n(l+1>'\/ 20 T n<l+1>]

87

