
3.1 Neural Networks and Backpropagation

CS 6301
Spring 2023

1Many Slides from Stanford CS224n and Rui Zhang

Outline - Key Concepts
NLP

N/A
ML

Neural Networks
Forward Propagation
Gradient Descent
Backpropagation
Computational Graph
Optimizers

2

Neural Networks == Deep Learning

3

Biological “Inspiration”

4

Some History
● Neural network algorithms date to the 80’s

○ Originally inspired by early neuroscience

● Historically slow, complex, and unwieldy
● Now: term is abstract enough to encompass almost any model – but useful!
● Dramatic shift in last 3-4 years away from MaxEnt/LR (linear, convex) to

“neural net” (non-linear architecture, non-convex)

5

Linearity, Convexity
● MaxEnt (linear, convex) to “neural net” (non-linear architecture, non-convex)

6

(Starting from) A Neuron
A neuron is the fundamental building block of neural networks.
e.g., a neuron with sigmoid function

7

Presentations

8

Projects

9

Two layer neural networks

10

Activation Functions

11

Activation Functions

12

Activation Functions

13

Leaky ReLU

How to train Neural Networks?

14

● Start from two-layer perceptron.

How to train two-layer Perceptron?
Forward propagation:

Backward propagation:

15

How to train two-layer Perceptron?
Forward propagation: In this phase, the inputs for a training instance are fed into the neural
network. This results in a forward cascade of computations across the layers, using the current
set of weights.

Backward propagation:

16

How to train two-layer Perceptron?
Forward propagation: In this phase, the inputs for a training instance are fed into the neural
network. This results in a forward cascade of computations across the layers, using the current
set of weights. The output is the prediction of current weights.

Backward propagation: The main goal of the backward phase is to learn the gradient of the
loss function with respect to the different weights by ❓.

17

Animation

Forward propagation

We use the sigmoid activation
function which introduces
better non-linearity:

19

Forward propagation

20

Forward propagation

21

Forward propagation

22

Forward propagation - Compact Form

23

Forward propagation - Compact Form

24

Beyond two layers: multilayer neural networks
Why not add more and more layers to learn more complex decision boundaries?

25

Discriminative Model (e.g. Neural Network)
The discriminative model is parameterized by

26

Discriminative Model Objective Function
The discriminative model is parameterized by

We often use negative log likelihood over training data as our objective function
or loss function. It is a function of

27

Discriminative Model Objective Function
The discriminative model is parameterized by

We often use negative log likelihood over training data as our objective function
or loss function. It is a function of

We then optimize the parameters to minimize the loss. Better model has lower loss

28

Optimize Objective Function by Gradient Descent
Calculate the gradient of the loss function with respect to the parameter

Update by moving a small step in the gradient direction to decrease the loss

is the learning rate

29

Gradient Descent

30

Gradient Descent
The key operation in gradient descent is to calculate the gradient.

31

Gradient calculation recap

32

Gradient of univariate scalar-valued functions

33

Gradient of multivariate scalar-valued functions

34

Gradient of multivariate scalar-valued functions

35

What about vector-valued functions?

Gradient of multivariate vector-valued functions: Jacobian
Matrix

36

Example Jacobian: Elementwise activation Function

37

Other Jacobians

Left as exercise. Will be used later.
38

Chain Rule
Chain Rule tells us how to calculate gradients of composite functions.

39

Example

40

Calculate for the following feed-forward neural network.

Example

41

Calculate

Example

42

Calculate

Backprop

50

Backpropagation
We use gradient descent to optimize the parameters in neural networks.

The key question: How can we efficiently calculate the gradients in neural
networks (or any computational graph)?

The key intuition: View neural networks (or any computational graph) as
compositions of functions and use chain rules to calculate the gradient.

This is Backpropagation = Gradient Descent + Chain Rule

51

Computation Graph (for implementation)
In software library (e.g. pytorch, TF), neural networks are implemented as
Computation Graph (CG).

52

Forward Propagation in CG
In software library (e.g. pytorch, TF), neural networks are implemented as
Computation Graph (CG).

53

Backpropagation in CG
In software library, neural networks are implemented as Computation Graph (CG).

54

Backpropagation avoids duplicated computation
Backpropagation follows the computation graph in reverse order, so you avoid
dupdated computation.

55

Backpropagation: Single Node
Node receives an upstream gradient.
Each node has a local gradient.
Goal is to pass on the correct downstream gradient.
By Chain Rule: downstream gradient = upstream gradient x local gradient.

56

Backpropagation: Multiple Inputs
each input

57

Backpropagation: Multiple Outputs
If a node has multiple outgoing edges

58

Example (Skip)

59

Optimizers
Once we calculate the gradient with respect to the objective function, we optimize
objective function by gradient descent.

The very basic one is standard gradient descent. But there are many other
choices of optimizers:

● Batch Gradient Descent
● Stochastic Gradient Descent (SGD)
● Mini-batch Gradient Descent
● SGD with Momentum
● Nesterov accelerated gradient
● Adagrad
● Adadelta
● RMSProp
● Adam; AdamW (most commonly used)
● Adafactor 72

Optimizers
Once we calculate the gradient with respect to the objective function, we optimize
objective function by gradient descent.

The very basic one is standard gradient descent. But there are many other
choices of optimizers:

● Batch Gradient Descent
● Stochastic Gradient Descent (SGD)
● Mini-batch Gradient Descent
● SGD with Momentum
● Nesterov accelerated gradient
● Adagrad
● Adadelta
● RMSProp
● Adam; AdamW (most commonly used)
● Adafactor 73

Batch Gradient Descent

74

Old ParametersNew Parameters Learning Rate Gradient

Mini-batch Gradient Descent

75

Gradient for a batch of training examples; batch size n

Stochastic Gradient Descent (SGD)

76

Gradient for each training example

SGD with Momentum

77

Momentum parameter, usually 0.9 or a similar value

Training Tricks
Shuffling the Training Data Every Epoch: avoid providing the training examples in a
meaningful order to our model as this may bias the optimization algorithm.

Regularization: L2 regularization adds L2 norm of parameters to the loss function.

Dropout: randomly zero-out nodes in the hidden layer with probability p at training time only

84

Training Tricks
Shuffling the Training Data Every Epoch: avoid providing the training examples in a
meaningful order to our model as this may bias the optimization algorithm.

Regularization: L2 regularization adds L2 norm of parameters to the loss function.

Dropout: randomly zero-out nodes in the hidden layer with probability p at training time only

Learning Rate Decay: gradually reduce learning rate as training continues

85

Training Tricks
Shuffling the Training Data Every Epoch: avoid providing the training examples in a
meaningful order to our model as this may bias the optimization algorithm.

Regularization: L2 regularization adds L2 norm of parameters to the loss function.

Dropout: randomly zero-out nodes in the hidden layer with probability p at training time only

Learning Rate Decay: gradually reduce learning rate as training continues

Early stopping
● You should thus always monitor error on a validation set during training and stop (with

some patience) if your validation error does not improve enough.
● Use Patience

86https://paperswithcode.com/method/early-stopping

Parameter Initialization
Very Important for neural networks to achieve good performance.

Uniform Initialization: Initialize weights in some range, such as [-0.1, 0.1] for
example

Xavier Initialization: n(l) is the number of input units to W (fan-in) and n(l+1) is
the number of output units from W (fan-out).

87

